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Abstract - In this paper we present various optimizations within the Visual 
Simultaneous Localization And Mapping (SLAM) algorithm for use in autonomous 
driving cars. We observed potential weaknesses in existing SLAM algorithms and 
propose simple mechanisms for landmark selection, filtering and matching to improve 
visual SLAM. We compare the results of our approach with other SLAM algorithms.  

Introduction 
In today’s world, autonomous vehicles are being developed by a variety of companies and 
educational institutions. One of the main reasons for the existence of autonomous vehicles, 
is that it wants to reduce the amount of fatal car accidents. Companies like Google, Tesla 
and Toyota have made an effort into improving their own autonomous vehicles in these past 
few years. These vehicles require information of the environment to safely navigate to their 
point of destination. Generated sensor data is mandatory to achieving autonomous driving.  
 
The Urbinn Learning Lab aims to develop vehicles that can drive autonomously in urban 
areas. It’s goal is to build a solution for last-mile transportation and for driving around tourists 
in the city of Delft, The Netherlands. For this project, we strive to accurately map the city, 
determine the position of the car, nearby obstacles and traffic in real-time. This paper reports 
on our progress to accurately estimate the camera’s odometry and object localization. We 
reveal potential weaknesses in existing solutions for Visual Simultaneous Localization And 
Mapping (SLAM), and propose simple mechanisms for landmark selection, filtering and 
matching to improve visual SLAM. 
 
Furthermore, by identifying objects through the use of an object detection system we are 
able to create a semantic map (Nüchter & Hertzberg, 2008) which can be used to navigate 
urban environments. Based on the motion of dynamic objects within the semantic map we 
create the ability for the autonomous vehicle to make decisions based on the velocity and 
direction. 
 
In the following sections we discuss related work, our own approach, the executed 
experiments, the results of the experiments and the conclusion.  
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I. Related work  
In this section we discuss related work on sparse visual methods for SLAM. Our discussion, 
as well as the evaluation is focused only on SLAM approaches. 
 
SLAM 
SLAM stands for Simultaneous Localization and Mapping and is a family of algorithms to 
simultaneously estimate the camera position and the position of observed landmarks with an 
autonomous mobile robot. Different kind of sensors can utilize the SLAM algorithm to be 
used as input data for this process, e.g. LIDAR (Zhang & Singh, 2015), stereo camera 
(Mur-Artal, Tardós, 2017), RGB-D (Kerl, Sturm & Cremers 2013). This paper focuses on 
Sparse Visual Stereo SLAM, as described in (Strasdat, Montiel & Davison, 2010). 
 
There are different types of SLAM algorithms that have their own approach in using sensor 
data. LSD-SLAM and SVO-SLAM make use of a direct SLAM method called monocular 
SLAM. ORB-SLAM2 the stereo implementation of SLAM. One of the shortcomings of SLAM 
algorithms is that they generate many landmarks, close loops on trajectory only, which 
spreads errors across the trajectory instead of fixing the true invalid pose estimations. 
Therefore, SLAM algorithms make use of a technique called Bundle Adjustment (BA). 
 
LSD-SLAM 
The LSD method is a SLAM algorithm is based on a keyframe localization and mapping 
approach. LSD-SLAM uses monocular and stereo images to track the motion of the camera 
and allows to build consistent, large-scale maps of the direct environment. LSD-SLAM uses 
direct image alignment coupled with filtering-based estimation of semi-dense depth maps. 
The global map is represented as a pose graph consisting of keyframes as vertices with 3D 
similarity transforms as edges, that incorporate changing scale of the environment and 
allowing to detect and correct accumulated drift. LSD-SLAM is not suitable for our research, 
since the open source project is not longer supported by the developers. Furthermore, 
LSD-SLAM only supports one specific input format for images which limits the use of 
different types of sensor data. 
 
SVO-SLAM 
SVO-SLAM (Semi-direct Visual Odometry) is a semi-direct monocular visual odometry 
algorithm. This operates directly on pixel intensities, which results in subpixel precision at 
high frame-rates.  
 
ORB-SLAM2 
The ORB-SLAM2 algorithm can be used for monocular, stereo and RGB-D cameras and 
results in a sparse 3D reconstruction. This algorithm utilizes loop detection and relocalization 
to establish the position of the camera in real time. 
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Object Detection  
The real-time object detection system You Only Look Once (YOLO) (Redmon, Divvala, 
Girshick & Farhadi 2016) learns by using labeled examples (images) to predict, in a single 
pass, and draws the bounding box around an object. A single neural network is used which 
predicts the bounding boxes and class probabilities directly from full images in one 
evaluation.  
 
Semantic Mapping 
According to Nüchter & Hertzberg (Nüchter & Hertzberg,  2008), a semantic map contains 
assignments of mapped features to entities of known classes, as well as spatial information 
about the environment. Ideally, a semantic map should allow the autonomous driving system 
to reason about the environment and make appropriate decisions. When the semantic map 
is being built, the entities are bound to pose, velocity and behavior which are described by 
attributes.  

II. Design 
We present approaches for landmark selection, filtering and matching used within SLAM 
algorithms. We also present a technique to use object detection and classification to 
optimize landmark selection. The source code of our algorithm is publicly available for further 
research purposes.  
 
Landmark selection 
Sparse visual SLAM methods rely on selecting landmarks that can easily be identified 
across images in order to estimate the distance and camera poses. By reducing the amount 
of unnecessary landmarks we are able to reduce the noise in frames. This is done by 
computing only a select number of pixels, and thus rely on a selection mechanism that 
identifies landmarks that confidently match the same landmark in another image. Because 
horizontal displacement is used for depth estimation, we choose to select landmarks that lie 
on vertical edges by using the Prewitt operator (Chaple, Daruwala & Gofane, 2015). This 
approach has already been used in previous work (e.g. ORB2). 
In order to match landmarks in other images we additionally use two filters that identify the 
top and bottom of these vertical edges. 
 
Landmark filtering 
We use image patches around landmarks to identify the same landmark in other images. In 
our experiments we have identified that a patch with low contrast matching a patch in 
another image has an increasing chance of being a false positive. Therefore we propose to 
filter out low contrast patches to increase the likelihood that an extracted patch is correctly 
matched to a patch in another image. The contrast of a patch is estimated by its standard 
deviation across pixels. 
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Landmark matching 
To account differences in contrast between images we propose to use the L2-norm1 
between two patches divided by the L2-norm with the image median and find that this does 
allow straightforward filtering of false positives with a simple threshold. 
 
Stereo matching 
To estimate the distance of a specific landmark in a left-hand-camera frame, we match the 
landmark in the corresponding right-hand-camera frame. Given that the images are rectified, 
we search for the corresponding position in the right frame by trying all positions to the left 
on the same horizontal line. Similarity between two landmarks is estimated using the 
L1-norm1 between 17x17 pixel image patches around each position. Image patch matching 
can result in false positives, especially when there are recurring patterns like windows in a 
facade. We find that these cases are effectively reduced by filtering out landmarks for which 
the similarity to the best matching position does not exceed that of the second-best position 
by some threshold. If a landmark is kept, we use subpixel estimation in the right-hand frame 
to further refine the disparity and use this to estimate the distance.  
 
Object detection and classification 
To detect objects and estimate their location, we use an existing object detector. The object 
detector used in our experiments returns bounding boxes and object classes of all detected 
objects in an image. Initially, we assume that a landmark inside a bounding box belongs to 
an object of the identified class, and after a filtering and clustering step we can use these 
landmarks’ coordinates to estimate the precise location of static objects within the map. 
 
Pose estimation 
Our system uses motion-only bundle adjustment (Mur-Artal, Tardós, 2017) to determine the 
camera position of a subsequent frame based on the covisible landmarks between frames.  
 

 

 

 

 

1The L1- and L2-norm are methods to calculate the distance between to points.  
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III. Experiment 
To analyse our proposed design we used the KITTI-dataset. The KITTI-dataset consists of 
sensor recordings taken when driving a car in Karlsruhe, a dense village area in Germany, 
including stereo images from a front-facing camera that is mounted on top of the car. This 
dataset consists of recordings, with exception to sequence 01, which takes place on the 
highway. Our project is focused on urban areas therefore sequence 01 is not applicable for 
our experiment. The KITTI dataset is arguably the most often used dataset to evaluate the 
odometry for SLAM methods, making this dataset suitable to analyze problems in 
localization. 
 
Evaluation setup 
We have evaluated our setup by comparing our results with the ground truth of the 
KITTI-dataset. This is accomplished by comparing the trajectory Fig. 1 (right) from a 
top-down perspective with the ground truth Fig. 1 (left). With this approach we can evaluate 
the accuracy of the results created by our setup.

 
Fig 1. KITTI sequence 0, ground-truth trajectory (Left). Estimated trajectory (Right). 
 
The results show that there is a slight error in our trajectory. 
 
Loop closure 
As described in (Briskin, Geva, Rivlin & Rotstein, 2017), loop closure in existing visual SLAM 
methods depend on recognizing the position it has passed earlier in combination with the 
landmarks it has observed. A similar pose earlier in the trajectory cannot recognize the 
locations of opposite directions which were previously passed. This information is used to 
compute a 3D structure of the environment together with the relative motion of the recording.  
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Fig. 2. Early version of semantic map with detected objects.

 
Semantic map 
In combination with an object detection system we are able to locate objects within a 2D 
space. In Fig. 2 we have plotted the trajectory and all the detected objects within the frames. 
In future work we can use this information to classify objects as dynamic or static. By filtering 
out dynamic objects we establish a semantic map with landmarks that can be used for 
optimization in the relocalization algorithm.  
 
Reprojection 
In our experiments, it appeared that bundle adjustment is quite susceptible to mismatched 
landmarks or the use of landmarks that are moving, even when used with a Huber kernel. 
We filter out landmarks that do not correspond to the correct pose estimation. By 
reprojecting every landmark using the estimated pose we can identify the landmarks that 
were responsible for that pose. We iteratively rerun motion-only bundle adjustment with all 
landmarks but those responsible for the previous pose estimations. Finally, the lowest 
L2-norm to the pose of the previous frame is chosen. 
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IV. Results 
To evaluate the results of our algorithm, we make use of the KITTI-devkit . This tool allows 1

us to compare the ground truth of sequence 05 through 07 and 10 of the KITTI-dataset with 
the results of our own trajectory. For example, Fig. 3 shows a comparison of our trajectory 
(blue) with the ground truth (red).  

 
Fig. 3. Evaluation of KITTI sequence 07  
 
To evaluate the trajectory the KITTI-devkit provides us with a translation error and a rotation 
error (Fig. 4). The translation error is the deviation (indicated as percentages) compared to 
the ground truth. Whereas the rotation error is the deviation in degrees per meter.  
 

KITTI sequence Translation error Rotation error 

05 2.226% 0.0001 [deg/m] 

06 2.8025% 0.000174 [deg/m] 

07 3.9951% 0.000320 [deg/m] 

10 1.5581% 0.000142 [deg/m] 

Fig. 4. Translation error and Rotation error table  
 

1 KITTI odometry development kit (http://kitti.is.tue.mpg.de/kitti/devkit_odometry.zip) 
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V. Discussion 
This discussion will argue the improvements we have made during the development of our 
algorithm. Furthermore, we will highlight findings which require further research. 
 
Improvements 
During our research we found that some improvements made noticeable differences, e.g. 
eliminating invalid frames (Fig. 3). This optimizes the trajectory without applying Full Bundle 
Adjustment. In Fig. 5 (left) we show the trajectory of sequence 00 of the KITTI-dataset 
without the elimination of the invalid frames. On Fig. 5 (right) these invalid frames have been 
removed and shows a resemblance to the ground truth (Fig. 1 left).

 
Fig. 5. Trajectory with invalid frames (Left). Trajectory without invalid frames (Right).

 
Findings 
In our experiments, we found several situations in which errors in estimated odometry occur. 
However, this requires further research.  
 
In Fig. 3, a truck crosses the intersection which in some frames causes the algorithm to use 
the truck as a static landmark and thus falsely predicts lateral movement of the camera. After 
analysing the error in the trajectory, we found this image to be considered as an invalid 
frame. 
 
Our system currently utilizes motion-only bundle adjustment (Mur-Artal, Tardós, 2017) to 
determine the camera position of a subsequent frame based on the covisible landmarks 
between frames. Motion-only Bundle Adjustment (BA) is a technique used to improve the 
quality of the semantic map by determining the camera position of a subsequent frame 
based on the covisible landmarks between frames. However, in the future we want to 
implement the use of Full Bundle Adjustment. Full Bundle Adjustment is used to close loops 
in the trajectory by spreading the errors across the entire trajectory instead of fixing the true 
invalid pose estimations. 
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VI. Conclusion 
In conclusion we have created an algorithm that utilizes vertical edge detection and stereo 
matching to create a semantic map.  
 
During our experiments we encountered errors which influenced the output of the trajectory. 
By analysing the landmarks, we detected that moving objects, e.g. trucks, see Fig. 3, which 
take up a significant portion of the frame, causes the algorithm to inaccurately estimate the 
trajectory. As shown in Fig. 5 a trajectory can be improved by filtering out invalid frames with 
the use of reprojection.  
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